Page Menu
Home
Phabricator
Search
Configure Global Search
Log In
Files
F7712430
LzmaBench.cpp
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Size
12 KB
Referenced Files
None
Subscribers
None
LzmaBench.cpp
View Options
// LzmaBench.cpp
#include "StdAfx.h"
#include "LzmaBench.h"
#ifndef _WIN32
#include <time.h>
#endif
#include "../../../Common/CRC.h"
#include "../LZMA/LZMADecoder.h"
#include "../LZMA/LZMAEncoder.h"
static const UInt32 kAdditionalSize =
#ifdef _WIN32_WCE
(1 << 20);
#else
(6 << 20);
#endif
static const UInt32 kCompressedAdditionalSize = (1 << 10);
static const UInt32 kMaxLzmaPropSize = 10;
class CRandomGenerator
{
UInt32 A1;
UInt32 A2;
public:
CRandomGenerator() { Init(); }
void Init() { A1 = 362436069; A2 = 521288629;}
UInt32 GetRnd()
{
return
((A1 = 36969 * (A1 & 0xffff) + (A1 >> 16)) << 16) ^
((A2 = 18000 * (A2 & 0xffff) + (A2 >> 16)) );
}
};
class CBitRandomGenerator
{
CRandomGenerator RG;
UInt32 Value;
int NumBits;
public:
void Init()
{
Value = 0;
NumBits = 0;
}
UInt32 GetRnd(int numBits)
{
if (NumBits > numBits)
{
UInt32 result = Value & ((1 << numBits) - 1);
Value >>= numBits;
NumBits -= numBits;
return result;
}
numBits -= NumBits;
UInt32 result = (Value << numBits);
Value = RG.GetRnd();
result |= Value & ((1 << numBits) - 1);
Value >>= numBits;
NumBits = 32 - numBits;
return result;
}
};
class CBenchRandomGenerator
{
CBitRandomGenerator RG;
UInt32 Pos;
UInt32 Rep0;
public:
UInt32 BufferSize;
Byte *Buffer;
CBenchRandomGenerator(): Buffer(0) {}
~CBenchRandomGenerator() { Free(); }
void Free()
{
::MidFree(Buffer);
Buffer = 0;
}
bool Alloc(UInt32 bufferSize)
{
if (Buffer != 0 && BufferSize == bufferSize)
return true;
Free();
Buffer = (Byte *)::MidAlloc(bufferSize);
Pos = 0;
BufferSize = bufferSize;
return (Buffer != 0);
}
UInt32 GetRndBit() { return RG.GetRnd(1); }
/*
UInt32 GetLogRand(int maxLen)
{
UInt32 len = GetRnd() % (maxLen + 1);
return GetRnd() & ((1 << len) - 1);
}
*/
UInt32 GetLogRandBits(int numBits)
{
UInt32 len = RG.GetRnd(numBits);
return RG.GetRnd(len);
}
UInt32 GetOffset()
{
if (GetRndBit() == 0)
return GetLogRandBits(4);
return (GetLogRandBits(4) << 10) | RG.GetRnd(10);
}
UInt32 GetLen1() { return RG.GetRnd(1 + (int)RG.GetRnd(2)); }
UInt32 GetLen2() { return RG.GetRnd(2 + (int)RG.GetRnd(2)); }
void Generate()
{
RG.Init();
Rep0 = 1;
while(Pos < BufferSize)
{
if (GetRndBit() == 0 || Pos < 1)
Buffer[Pos++] = (Byte)RG.GetRnd(8);
else
{
UInt32 len;
if (RG.GetRnd(3) == 0)
len = 1 + GetLen1();
else
{
do
Rep0 = GetOffset();
while (Rep0 >= Pos);
Rep0++;
len = 2 + GetLen2();
}
for (UInt32 i = 0; i < len && Pos < BufferSize; i++, Pos++)
Buffer[Pos] = Buffer[Pos - Rep0];
}
}
}
};
class CBenchmarkInStream:
public ISequentialInStream,
public CMyUnknownImp
{
const Byte *Data;
UInt32 Pos;
UInt32 Size;
public:
MY_UNKNOWN_IMP
void Init(const Byte *data, UInt32 size)
{
Data = data;
Size = size;
Pos = 0;
}
STDMETHOD(Read)(void *data, UInt32 size, UInt32 *processedSize);
};
STDMETHODIMP CBenchmarkInStream::Read(void *data, UInt32 size, UInt32 *processedSize)
{
UInt32 remain = Size - Pos;
if (size > remain)
size = remain;
for (UInt32 i = 0; i < size; i++)
((Byte *)data)[i] = Data[Pos + i];
Pos += size;
if(processedSize != NULL)
*processedSize = size;
return S_OK;
}
class CBenchmarkOutStream:
public ISequentialOutStream,
public CMyUnknownImp
{
UInt32 BufferSize;
FILE *_f;
public:
UInt32 Pos;
Byte *Buffer;
CBenchmarkOutStream(): _f(0), Buffer(0) {}
virtual ~CBenchmarkOutStream() { delete []Buffer; }
void Init(FILE *f, UInt32 bufferSize)
{
delete []Buffer;
Buffer = 0;
Buffer = new Byte[bufferSize];
Pos = 0;
BufferSize = bufferSize;
_f = f;
}
MY_UNKNOWN_IMP
STDMETHOD(Write)(const void *data, UInt32 size, UInt32 *processedSize);
};
STDMETHODIMP CBenchmarkOutStream::Write(const void *data, UInt32 size, UInt32 *processedSize)
{
UInt32 i;
for (i = 0; i < size && Pos < BufferSize; i++)
Buffer[Pos++] = ((const Byte *)data)[i];
if(processedSize != NULL)
*processedSize = i;
if (i != size)
{
fprintf(_f, "\nERROR: Buffer is full\n");
return E_FAIL;
}
return S_OK;
}
class CCrcOutStream:
public ISequentialOutStream,
public CMyUnknownImp
{
public:
CCRC CRC;
MY_UNKNOWN_IMP
void Init() { CRC.Init(); }
STDMETHOD(Write)(const void *data, UInt32 size, UInt32 *processedSize);
};
STDMETHODIMP CCrcOutStream::Write(const void *data, UInt32 size, UInt32 *processedSize)
{
CRC.Update(data, size);
if(processedSize != NULL)
*processedSize = size;
return S_OK;
}
static UInt64 GetTimeCount()
{
#ifdef _WIN32
LARGE_INTEGER value;
if (::QueryPerformanceCounter(&value))
return value.QuadPart;
return GetTickCount();
#else
return clock();
#endif
}
static UInt64 GetFreq()
{
#ifdef _WIN32
LARGE_INTEGER value;
if (::QueryPerformanceFrequency(&value))
return value.QuadPart;
return 1000;
#else
return CLOCKS_PER_SEC;
#endif
}
struct CProgressInfo:
public ICompressProgressInfo,
public CMyUnknownImp
{
UInt64 ApprovedStart;
UInt64 InSize;
UInt64 Time;
void Init()
{
InSize = 0;
Time = 0;
}
MY_UNKNOWN_IMP
STDMETHOD(SetRatioInfo)(const UInt64 *inSize, const UInt64 *outSize);
};
STDMETHODIMP CProgressInfo::SetRatioInfo(const UInt64 *inSize, const UInt64 *outSize)
{
if (*inSize >= ApprovedStart && InSize == 0)
{
Time = ::GetTimeCount();
InSize = *inSize;
}
return S_OK;
}
static const int kSubBits = 8;
static UInt32 GetLogSize(UInt32 size)
{
for (int i = kSubBits; i < 32; i++)
for (UInt32 j = 0; j < (1 << kSubBits); j++)
if (size <= (((UInt32)1) << i) + (j << (i - kSubBits)))
return (i << kSubBits) + j;
return (32 << kSubBits);
}
static UInt64 MyMultDiv64(UInt64 value, UInt64 elapsedTime)
{
UInt64 freq = GetFreq();
UInt64 elTime = elapsedTime;
while(freq > 1000000)
{
freq >>= 1;
elTime >>= 1;
}
if (elTime == 0)
elTime = 1;
return value * freq / elTime;
}
static UInt64 GetCompressRating(UInt32 dictionarySize, UInt64 elapsedTime, UInt64 size)
{
UInt64 t = GetLogSize(dictionarySize) - (18 << kSubBits);
UInt64 numCommandsForOne = 1060 + ((t * t * 10) >> (2 * kSubBits));
UInt64 numCommands = (UInt64)(size) * numCommandsForOne;
return MyMultDiv64(numCommands, elapsedTime);
}
static UInt64 GetDecompressRating(UInt64 elapsedTime,
UInt64 outSize, UInt64 inSize)
{
UInt64 numCommands = inSize * 220 + outSize * 20;
return MyMultDiv64(numCommands, elapsedTime);
}
/*
static UInt64 GetTotalRating(
UInt32 dictionarySize,
bool isBT4,
UInt64 elapsedTimeEn, UInt64 sizeEn,
UInt64 elapsedTimeDe,
UInt64 inSizeDe, UInt64 outSizeDe)
{
return (GetCompressRating(dictionarySize, isBT4, elapsedTimeEn, sizeEn) +
GetDecompressRating(elapsedTimeDe, inSizeDe, outSizeDe)) / 2;
}
*/
static void PrintRating(FILE *f, UInt64 rating)
{
fprintf(f, "%5d MIPS", (unsigned int)(rating / 1000000));
}
static void PrintResults(
FILE *f,
UInt32 dictionarySize,
UInt64 elapsedTime,
UInt64 size,
bool decompressMode, UInt64 secondSize)
{
UInt64 speed = MyMultDiv64(size, elapsedTime);
fprintf(f, "%6d KB/s ", (unsigned int)(speed / 1024));
UInt64 rating;
if (decompressMode)
rating = GetDecompressRating(elapsedTime, size, secondSize);
else
rating = GetCompressRating(dictionarySize, elapsedTime, size);
PrintRating(f, rating);
}
static void ThrowError(FILE *f, HRESULT result, const char *s)
{
fprintf(f, "\nError: ");
if (result == E_ABORT)
fprintf(f, "User break");
if (result == E_OUTOFMEMORY)
fprintf(f, "Can not allocate memory");
else
fprintf(f, s);
fprintf(f, "\n");
}
const wchar_t *bt2 = L"BT2";
const wchar_t *bt4 = L"BT4";
int LzmaBenchmark(FILE *f, UInt32 numIterations, UInt32 dictionarySize)
{
if (numIterations == 0)
return 0;
if (dictionarySize < (1 << 18))
{
fprintf(f, "\nError: dictionary size for benchmark must be >= 19 (512 KB)\n");
return 1;
}
fprintf(f, "\n Compressing Decompressing\n\n");
NCompress::NLZMA::CEncoder *encoderSpec = new NCompress::NLZMA::CEncoder;
CMyComPtr<ICompressCoder> encoder = encoderSpec;
NCompress::NLZMA::CDecoder *decoderSpec = new NCompress::NLZMA::CDecoder;
CMyComPtr<ICompressCoder> decoder = decoderSpec;
CBenchmarkOutStream *propStreamSpec = new CBenchmarkOutStream;
CMyComPtr<ISequentialOutStream> propStream = propStreamSpec;
propStreamSpec->Init(f, kMaxLzmaPropSize);
PROPID propIDs[] =
{
NCoderPropID::kDictionarySize
};
const int kNumProps = sizeof(propIDs) / sizeof(propIDs[0]);
PROPVARIANT properties[kNumProps];
properties[0].vt = VT_UI4;
properties[0].ulVal = UInt32(dictionarySize);
const UInt32 kBufferSize = dictionarySize + kAdditionalSize;
const UInt32 kCompressedBufferSize = (kBufferSize / 2) + kCompressedAdditionalSize;
if (encoderSpec->SetCoderProperties(propIDs, properties, kNumProps) != S_OK)
{
fprintf(f, "\nError: Incorrect command\n");
return 1;
}
encoderSpec->WriteCoderProperties(propStream);
CBenchRandomGenerator rg;
if (!rg.Alloc(kBufferSize))
{
fprintf(f, "\nError: Can't allocate memory\n");
return 1;
}
rg.Generate();
CCRC crc;
crc.Update(rg.Buffer, rg.BufferSize);
CProgressInfo *progressInfoSpec = new CProgressInfo;
CMyComPtr<ICompressProgressInfo> progressInfo = progressInfoSpec;
progressInfoSpec->ApprovedStart = dictionarySize;
UInt64 totalBenchSize = 0;
UInt64 totalEncodeTime = 0;
UInt64 totalDecodeTime = 0;
UInt64 totalCompressedSize = 0;
for (UInt32 i = 0; i < numIterations; i++)
{
progressInfoSpec->Init();
CBenchmarkInStream *inStreamSpec = new CBenchmarkInStream;
inStreamSpec->Init(rg.Buffer, rg.BufferSize);
CMyComPtr<ISequentialInStream> inStream = inStreamSpec;
CBenchmarkOutStream *outStreamSpec = new CBenchmarkOutStream;
outStreamSpec->Init(f, kCompressedBufferSize);
CMyComPtr<ISequentialOutStream> outStream = outStreamSpec;
HRESULT result = encoder->Code(inStream, outStream, 0, 0, progressInfo);
UInt64 encodeTime = ::GetTimeCount() - progressInfoSpec->Time;
UInt32 compressedSize = outStreamSpec->Pos;
if(result != S_OK)
{
ThrowError(f, result, "Encoder Error");
return 1;
}
if (progressInfoSpec->InSize == 0)
{
fprintf(f, "\nError: Internal ERROR 1282\n");
return 1;
}
///////////////////////
// Decompressing
CCrcOutStream *crcOutStreamSpec = new CCrcOutStream;
CMyComPtr<ISequentialOutStream> crcOutStream = crcOutStreamSpec;
UInt64 decodeTime;
for (int j = 0; j < 2; j++)
{
inStreamSpec->Init(outStreamSpec->Buffer, compressedSize);
crcOutStreamSpec->Init();
if (decoderSpec->SetDecoderProperties2(propStreamSpec->Buffer, propStreamSpec->Pos) != S_OK)
{
fprintf(f, "\nError: Set Decoder Properties Error\n");
return 1;
}
UInt64 outSize = kBufferSize;
UInt64 startTime = ::GetTimeCount();
result = decoder->Code(inStream, crcOutStream, 0, &outSize, 0);
decodeTime = ::GetTimeCount() - startTime;
if(result != S_OK)
{
ThrowError(f, result, "Decode Error");
return 1;
}
if (crcOutStreamSpec->CRC.GetDigest() != crc.GetDigest())
{
fprintf(f, "\nError: CRC Error\n");
return 1;
}
}
UInt64 benchSize = kBufferSize - progressInfoSpec->InSize;
PrintResults(f, dictionarySize, encodeTime, benchSize, false, 0);
fprintf(f, " ");
PrintResults(f, dictionarySize, decodeTime, kBufferSize, true, compressedSize);
fprintf(f, "\n");
totalBenchSize += benchSize;
totalEncodeTime += encodeTime;
totalDecodeTime += decodeTime;
totalCompressedSize += compressedSize;
}
fprintf(f, "---------------------------------------------------\n");
PrintResults(f, dictionarySize, totalEncodeTime, totalBenchSize, false, 0);
fprintf(f, " ");
PrintResults(f, dictionarySize, totalDecodeTime,
kBufferSize * numIterations, true, totalCompressedSize);
fprintf(f, " Average\n");
return 0;
}
File Metadata
Details
Attached
Mime Type
text/x-c++
Expires
Fri, Nov 21, 3:44 AM (1 d, 12 h)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
1360853
Default Alt Text
LzmaBench.cpp (12 KB)
Attached To
Mode
rXMOUNT xmount
Attached
Detach File
Event Timeline
Log In to Comment