Page Menu
Home
Phabricator
Search
Configure Global Search
Log In
Files
F4942952
crypto.cpp
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Size
30 KB
Referenced Files
None
Subscribers
None
crypto.cpp
View Options
/*
* This file is a work of a US government employee and as such is in the Public domain.
* Simson L. Garfinkel, March 12, 2012
*/
#include "affconfig.h"
#include "afflib.h"
#include "afflib_i.h"
#include "utils.h"
#ifdef HAVE_OPENSSL_PEM_H
#include <openssl/pem.h>
#include <openssl/bio.h>
#endif
#ifdef HAVE_STL
#include <vector>
#include <set>
#include <string>
using namespace std;
#endif
#ifdef HAVE_CSTRING
#include <cstring>
#endif
/****************************************************************
*** LOW LEVEL ROUTINES
****************************************************************/
/**
* Returns TRUE if the segment named 'buf' has the suffixi indicating
* that it is an encrypted segment.
*/
int af_is_encrypted_segment(const char *segname){
if(strcmp(segname,AF_AFFKEY)==0) return 1;
if(aff::ends_with(segname,AF_AES256_SUFFIX)) return 1;
if(strncmp(segname,AF_AFFKEY_EVP,strlen(AF_AFFKEY_EVP)-1)==0) return 1;
return 0;
}
/**
* Returns TRUE if the segment named 'buf' has the suffix indicating
* that it is a signature segment.
*
* @param segname - segment to check
*/
int af_is_signature_segment(const char *segname){
int num = 0;
char cc;
if(aff::ends_with(segname,AF_SIG256_SUFFIX)) return 1;
if(sscanf(segname,"affbom%d%c",&num,&cc)==1) return 1; // it's a bom segment
return 0;
}
/****************************************************************
*** AES ENCRYPTION LAYER
****************************************************************/
static const char *aff_cannot_sign = "AFFLIB: OpenSSL does not have SHA256! "\
"AFF segments cannot be signed. "\
"See http://www.afflib.org/requirements.php for additional information.";
void af_crypto_allocate(AFFILE *af)
{
af->crypto = (struct af_crypto *)calloc(sizeof(struct af_crypto),1); // give space
}
/** compute SHA256.
* Return 0 if success, -1 if error.
*/
int af_SHA256(const unsigned char *data,size_t datalen,unsigned char md[32])
{
const EVP_MD *sha256 = EVP_get_digestbyname("SHA256");
if(!sha256) return -1;
uint32_t sha256_buflen = 32;
EVP_MD_CTX ctx;
EVP_DigestInit(&ctx,sha256);
EVP_DigestUpdate(&ctx,data,datalen);
if(EVP_DigestFinal(&ctx,md,&sha256_buflen)!=1) return -1; // EVP_DigestFinal returns 1 for success
return 0;
}
void af_crypto_deallocate(AFFILE *af)
{
#ifdef AES_BLOCK_SIZE
memset(&af->crypto->ekey,0,sizeof(af->crypto->ekey));
memset(&af->crypto->dkey,0,sizeof(af->crypto->dkey));
#endif
#ifdef HAVE_PEM_READ_BIO_RSA_PUBKEY
if(af->crypto->sign_privkey){
EVP_PKEY_free(af->crypto->sign_privkey);
af->crypto->sign_privkey = 0;
}
if(af->crypto->sign_pubkey){
EVP_PKEY_free(af->crypto->sign_pubkey);
af->crypto->sign_pubkey = 0;
}
if(af->crypto->sign_cert){
X509_free(af->crypto->sign_cert);
af->crypto->sign_cert = 0;
}
#endif
free(af->crypto);
af->crypto = 0;
}
int af_set_aes_key(AFFILE *af,const unsigned char *userKey,const int bits)
{
#ifdef HAVE_AES_ENCRYPT
if(af->crypto->sealing_key_set){
if(userKey==0){ // key was set and it is being cleared
af->crypto->sealing_key_set = 0;
return 0;
}
return AF_ERROR_KEY_SET; // key is already set
}
int r;
r = AES_set_encrypt_key(userKey,bits,&af->crypto->ekey);
if(r) return r;
r = AES_set_decrypt_key(userKey,bits,&af->crypto->dkey);
if(r) return r;
af->crypto->sealing_key_set = 1;
af->crypto->auto_encrypt = 1; // default
af->crypto->auto_decrypt = 1; // default
af_invalidate_vni_cache(af); // invalidate the cache, because now we can read encrypted values
return 0;
#else
return AF_ERROR_NO_AES;
#endif
}
/**
* Take an unencrypted AFFKEY, encrypt it with the SHA256 of the passphrase,
* and save it in the appropriate segment.
*/
int af_save_aes_key_with_passphrase(AFFILE *af,const char *passphrase, const u_char affkey[32])
{
#if defined(HAVE_AES_ENCRYPT)
if(af->crypto->sealing_key_set) return AF_ERROR_KEY_SET; // already enabled
/* Make an encrypted copy of the AFFkey */
unsigned char passphrase_hash[32];
af_SHA256((const unsigned char *)passphrase, strlen(passphrase), passphrase_hash);
struct affkey affkey_seg;
assert(sizeof(affkey_seg)==AFFKEY_SIZE);
memset((unsigned char *)&affkey_seg,0,sizeof(affkey_seg));
uint32_t version_number = htonl(1); // version 1
memcpy(affkey_seg.version,(u_char *)&version_number,4);
memcpy(affkey_seg.affkey_aes256,affkey,32);
/* Use the hash to encrypt the key and all zeros */
AES_KEY ekey;
AES_set_encrypt_key(passphrase_hash,256,&ekey);
AES_encrypt(affkey_seg.affkey_aes256,
affkey_seg.affkey_aes256,&ekey);
AES_encrypt(affkey_seg.affkey_aes256+AES_BLOCK_SIZE,
affkey_seg.affkey_aes256+AES_BLOCK_SIZE,&ekey);
AES_encrypt(affkey_seg.zeros_aes256,affkey_seg.zeros_aes256,&ekey);
/* Write this to a segment */
if(af_update_seg(af,AF_AFFKEY,0,(const u_char *)&affkey_seg,sizeof(affkey_seg))) return -1;
memset((unsigned char *)&affkey_seg,0,sizeof(affkey_seg)); // erase the temp data
return 0;
#endif
#if !defined(HAVE_AES_ENCRYPT)
return AF_ERROR_NO_AES;
#endif
}
/** MacOS 10.5 with GCC 4.0.1 packed affkey at 52 bytes.
** Linux GCC 4.1.2 packed affkey at 56 bytes. It should be 52 bytes
** --- 4 bytes for the version number, 32 bytes for the affkey, 16 bytes for encryption of zeros.
** original code specified the version as uint32_t version:32, for which the
** compiler allocated 64 bits...
** So this code needs to be willing to accept a 52-byte or 56-byte affkey.
**/
/* Legacy - this version of the structure was improperly used in AFFLIB prior to
* 3.1.6. Unfortunately, the structure didn't pack properly, resulting in some images
* in which the affkey structure was too large.
*/
struct affkey_legacy {
uint32_t version:32;
u_char affkey_aes256[32]; // AFF key encrypted with SHA-256 of passphrase
// encrypted as two codebooks in a row; no need for CBC
u_char zeros_aes256[16]; // all zeros encrypted with SHA-256 of passphrase
};
int af_get_aes_key_from_passphrase(AFFILE *af,const char *passphrase,
unsigned char affkey[32])
{
#if defined(HAVE_AES_ENCRYPT)
if(af->crypto->sealing_key_set) return AF_ERROR_KEY_SET; // already enabled
/* Get the segment with the key in it. It should be AFFKEY_SIZE
* but there are a few images out there with the wrong key size due
* to a compiler packing bug. Automatically handle those.
*/
struct affkey affkey_seg; // in-memory copy
u_char kbuf[1024];
size_t klen=sizeof(kbuf);
uint32_t version;
int kversion=0;
/* Try to get the segment */
if(af_get_seg(af,AF_AFFKEY,0,kbuf,&klen)) return AF_ERROR_AFFKEY_NOT_EXIST;
if(sizeof(affkey_seg)==klen){
// On-disk structure is correct; copy it over
memcpy(&affkey_seg,kbuf,klen);
memcpy((char *)&version,affkey_seg.version,4);
kversion = ntohl(version);
} else {
// Try to figure it out manually
memcpy((char *)&version,kbuf,4);
kversion = ntohl(version);
memcpy(affkey_seg.affkey_aes256,kbuf+4,sizeof(affkey_seg.affkey_aes256));
memcpy(affkey_seg.zeros_aes256,kbuf+36,sizeof(affkey_seg.zeros_aes256));
}
/* make sure version is correct */
if(kversion != 1){
errno = EINVAL;
return AF_ERROR_AFFKEY_WRONG_VERSION;
}
/* hash the passphrase */
unsigned char passphrase_hash[32];
if(af_SHA256((const unsigned char *)passphrase,strlen(passphrase), passphrase_hash)){
return AF_ERROR_NO_SHA256;
}
/* Try to decrypt the key */
AES_KEY dkey;
AES_set_decrypt_key(passphrase_hash,256,&dkey);
AES_decrypt(affkey_seg.affkey_aes256,
affkey_seg.affkey_aes256,&dkey);
AES_decrypt(affkey_seg.affkey_aes256+AES_BLOCK_SIZE,
affkey_seg.affkey_aes256+AES_BLOCK_SIZE,&dkey);
AES_decrypt(affkey_seg.zeros_aes256,affkey_seg.zeros_aes256,&dkey);
/* See if its zero? */
for(u_int i=0;i<sizeof(affkey_seg.zeros_aes256);i++){
if(affkey_seg.zeros_aes256[i]) return AF_ERROR_WRONG_PASSPHRASE;
}
memcpy(affkey,affkey_seg.affkey_aes256,32); /* copy out the result */
memset((unsigned char *)&affkey_seg,0,sizeof(affkey_seg)); // erase the temp data
return 0;
#endif
#if !defined(HAVE_AES_ENCRYPT)
return AF_ERROR_NO_AES;
#endif
}
/**
* make a random affkey and encrypt it with passphrase.
*/
int af_establish_aes_passphrase(AFFILE *af,const char *passphrase)
{
#ifdef HAVE_AES_ENCRYPT
if(af->crypto->sealing_key_set) return AF_ERROR_KEY_SET; // already enabled
/* Can only establish a passphrase if the encryption segment doesn't exist */
if(af_get_seg(af,AF_AFFKEY,0,0,0)==0) return AF_ERROR_AFFKEY_EXISTS;
/* Check to make sure it wasn't public key encrypted */
char segname[AF_MAX_NAME_LEN];
snprintf(segname,sizeof(segname),AF_AFFKEY_EVP,0);
if(af_get_seg(af,segname,0,0,0)==0) return AF_ERROR_AFFKEY_EXISTS;
/* Okay; make a random key and encrypt it with the passphrase */
unsigned char affkey[32];
int r = RAND_bytes(affkey,sizeof(affkey)); // makes a random key; with REAL random bytes
if(r!=1) r = RAND_pseudo_bytes(affkey,sizeof(affkey)); // true random not supported
if(r!=1) return AF_ERROR_RNG_FAIL; // pretty bad...
/* I have the key, now save it */
r = af_save_aes_key_with_passphrase(af,passphrase,affkey);
memset(affkey,0,sizeof(affkey)); /* Erase the encryption key in memory */
return r;
#else
return AF_ERROR_NO_AES;
#endif
}
/** Like the one above, this public interface actually wipes the key after it is created.
* @param passphrase - Passphrae, use NULL to erase the encryption key.
* This can only be done if the file is opened read-only.
*/
int af_use_aes_passphrase(AFFILE *af,const char *passphrase)
{
af_invalidate_vni_cache(af);
if(passphrase==0 && !(af->openflags & O_RDWR)){
af->crypto->sealing_key_set = 0;
return 0;
}
if(af->crypto->sealing_key_set) return AF_ERROR_KEY_SET; // already enabled
unsigned char affkey[32];
int r = af_get_aes_key_from_passphrase(af,passphrase,affkey);
if(r) return r; // wrong keyphrase
r = af_set_aes_key(af,affkey,256); /* Set the encryption key */
memset(affkey,0,sizeof(affkey)); /* Erase the encryption key in memory */
return r;
}
/* gets the key with the old phrase and then changes it to the new one */
int af_change_aes_passphrase(AFFILE *af,const char *oldphrase,const char *newphrase)
{
if(af->crypto->sealing_key_set) return AF_ERROR_KEY_SET; // already enabled
unsigned char affkey[32];
int r = af_get_aes_key_from_passphrase(af,oldphrase,affkey);
if(r) return r;
r = af_save_aes_key_with_passphrase(af,newphrase,affkey);
memset(affkey,0,sizeof(affkey)); // erase the temp data
return r;
}
int af_has_encrypted_segments(AFFILE *af)
{
struct af_vnode_info vni;
af_vstat(af,&vni);
return vni.segment_count_encrypted>0;
}
/**
* Returns true if there are segments that cannot be decrypted
* (other than key segments)
*/
int af_cannot_decrypt(AFFILE *af){
if(af_has_encrypted_segments(af)==0) return 0; // no encrypted segments to decrypt
/* Now start at the beginning and see if any segments are read which are encrypted.
* If they are encrypted, then we don't have the encryption key.
*/
if(af_rewind_seg(af)) return -1;
char segname[AF_MAX_NAME_LEN];
memset(segname,0,sizeof(segname));
while(af_get_next_seg(af,segname,sizeof(segname),0,0,0)==0){
if(aff::ends_with(segname,AF_AES256_SUFFIX)) return 1; // we shouldn't see these.
}
return 0;
}
/****************************************************************
***
*** Signature Routines
***
****************************************************************/
/** See if the public key and private key match by dial a trial encryption and decryption.
*
* @param pubkey
* @param privkey
* @returns 0 if successful, -1 if failure.
*/
static int check_keys(EVP_PKEY *privkey,EVP_PKEY *pubkey)
{
char ptext[16]; /* plaintext of a 128-bit message */
unsigned char sig[1024]; /* signature; bigger than needed */
uint32_t siglen = sizeof(sig); /* length of signature */
const EVP_MD *sha256 = EVP_get_digestbyname("SHA256");
if(!sha256) return -1; // no SHA256.
EVP_MD_CTX md; /* EVP message digest */
/* make the plaintext message */
memset(ptext,0,sizeof(ptext));
strcpy(ptext,"Test Message");
EVP_SignInit(&md,sha256);
EVP_SignUpdate(&md,ptext,sizeof(ptext));
EVP_SignFinal(&md,sig,&siglen,privkey);
/* Verify the message */
EVP_VerifyInit(&md,sha256);
EVP_VerifyUpdate(&md,ptext,sizeof(ptext));
if(EVP_VerifyFinal(&md,sig,siglen,pubkey)!=1){
return -3;
}
return 0;
}
/**
* af_set_sign_files:
*
* Load the private key & certificate, make sure they are matched, and
* write to the AFF. This requirest not just AES256, but EVP_SHA256
* because we use the openSSL signature functions.
*
* @param af - The open AFFILE
* @param keyfile - The filename of the key file to read
* @param certfile - The filename of the certificate file to read
*/
int af_set_sign_files(AFFILE *af,const char *keyfile,const char *certfile)
{
const EVP_MD *sha256 = EVP_get_digestbyname("SHA256");
if(!sha256){
(*af->error_reporter)(aff_cannot_sign);
return AF_ERROR_NO_SHA256; //
}
BIO *bp = BIO_new_file(keyfile,"r");
if(!bp) return -1;
af->crypto->sign_privkey = PEM_read_bio_PrivateKey(bp,0,0,NULL);
BIO_free(bp);
if(!af->crypto->sign_privkey) return -2; // can't decode keyfile
bp = BIO_new_file(certfile,"r");
if(!bp) return -1;
PEM_read_bio_X509(bp,&af->crypto->sign_cert,0,0);
if(af->crypto->sign_cert==0){
EVP_PKEY_free(af->crypto->sign_privkey);
af->crypto->sign_privkey = 0;
return -3;
}
af->crypto->sign_pubkey = X509_get_pubkey(af->crypto->sign_cert);
BIO_free(bp);
if(check_keys(af->crypto->sign_privkey,af->crypto->sign_pubkey)){
/* private key doesn't match certificate */
EVP_PKEY_free(af->crypto->sign_privkey); af->crypto->sign_privkey = 0;
EVP_PKEY_free(af->crypto->sign_pubkey); af->crypto->sign_pubkey = 0;
return -4;
}
/* Looks good; save the cert in a segment */
BIO *xbp = BIO_new(BIO_s_mem()); // where we are writing
PEM_write_bio_X509(xbp,af->crypto->sign_cert);
af_update_seg_frombio(af,AF_SIGN256_CERT,0,xbp);
BIO_free(xbp);
return 0;
}
/* Sign the segment with the signing key. Signatures are calculated
* by taking the SHA256 of the following concatenated together:
* segment name
* segment arg (in network byte order)
* segment data
*/
int af_sign_seg3(AFFILE *af,const char *segname,
uint32_t arg,const unsigned char *data,uint32_t datalen,
uint32_t signmode)
{
const EVP_MD *sha256 = EVP_get_digestbyname("SHA256");
if(!sha256){
(*af->error_reporter)(aff_cannot_sign);
return AF_ERROR_NO_SHA256; //
}
if(af->crypto->sign_privkey==0) return -1; // can't sign; no signing key
if(strlen(segname)+strlen(AF_SIG256_SUFFIX)+1 > AF_MAX_NAME_LEN) return -1; // too long
char signed_segname[AF_MAX_NAME_LEN];
strlcpy(signed_segname,segname,AF_MAX_NAME_LEN);
strlcat(signed_segname,AF_SIG256_SUFFIX,AF_MAX_NAME_LEN);
if(signmode==AF_SIGNATURE_DELETE){
af_del_seg(af,signed_segname);
return 0;
}
uint32_t arg_net = htonl(arg);
unsigned char sig[1024]; /* signature; bigger than needed */
uint32_t siglen = sizeof(sig); /* length of signature */
EVP_MD_CTX md; /* EVP message digest */
EVP_SignInit(&md,sha256);
EVP_SignUpdate(&md,(const unsigned char *)segname,strlen(segname)+1);
EVP_SignUpdate(&md,(const unsigned char *)&arg_net,sizeof(arg_net));
EVP_SignUpdate(&md,data,datalen);
EVP_SignFinal(&md,sig,&siglen,af->crypto->sign_privkey);
return (*af->v->update_seg)(af,signed_segname,signmode,sig,siglen);
}
int af_sign_seg(AFFILE *af,const char *segname)
{
size_t datalen = 0;
/* Now get the data to verify */
if(af_get_seg(af,segname,0,0,&datalen)){
return AF_ERROR_SIG_DATAREAD_ERROR; // can't read the segment length
}
/* Now read the segment */
unsigned char *data=(unsigned char *)malloc(datalen);
if(data==0) return AF_ERROR_SIG_MALLOC;
uint32_t arg=0;
if(af_get_seg(af,segname,&arg,data,&datalen)){
free(data);
return AF_ERROR_SIG_DATAREAD_ERROR; // can't read the segment length
}
/* Note: it woudl be wrong to detect pages and sign them in mode1, because we don't really
* have access to the uncompressed data...
*/
int r = af_sign_seg3(af,segname,arg,data,datalen,AF_SIGNATURE_MODE0);
free(data);
return r;
}
#ifdef HAVE_STL
/** Returns number of segments that were signed.
* Returns -1 if there is an error.
*/
int af_sign_all_unsigned_segments(AFFILE *af)
{
vector<string> segs;
set<string>sigs;
char name[AF_MAX_NAME_LEN];
int count=0;
/* Get a list of all the segments and all the signatures */
if(af_rewind_seg(af)) return -1;
while(af_get_next_seg(af,name,sizeof(name),0,0,0)==0){
if(name[0]==0) continue; // don't sign the empty segments
if(aff::ends_with(name,AF_SIG256_SUFFIX)==0){
segs.push_back(name);
}
else{
sigs.insert(name);
}
}
/* Sign the ones that are unsigned. */
for(vector<string>::const_iterator s = segs.begin();
s != segs.end();
s++){
/* Compute name of the signature */
string signame = *s + AF_SIG256_SUFFIX;
if(sigs.find(signame) == sigs.end()){
if(af_sign_seg(af,s->c_str())){
(*af->error_reporter)("AFFLIB: Could not sign segment '%s'",s->c_str());
return -1;
}
count++;
}
}
return count;
}
#endif
/* Verify a segment against a particular signature and public key */
int af_hash_verify_seg2(AFFILE *af,const char *segname,u_char *sigbuf_,size_t sigbuf_len_,int sigmode)
{
const EVP_MD *sha256 = EVP_get_digestbyname("SHA256");
if(!sha256){
(*af->error_reporter)(aff_cannot_sign);
return AF_ERROR_NO_SHA256; //
}
/* Now get the data to verify */
size_t seglen = 0;
unsigned char *segbuf = 0;
uint32_t arg=0;
/* Do we need to get the page */
if(sigmode==AF_SIGNATURE_MODE1){
int64_t pagenumber = af_segname_page_number(segname);
if(pagenumber>=0){
seglen = af_page_size(af);
segbuf = (unsigned char *)malloc(seglen);
if(segbuf==0) return AF_ERROR_SIG_MALLOC;
if(af_get_page(af,pagenumber,segbuf,&seglen)){
free(segbuf);
return -1;
}
}
}
if(segbuf==0){ // get the raw segment
if(af_get_seg(af,segname,0,0,&seglen)){
return AF_ERROR_SIG_DATAREAD_ERROR; // can't read the segment length
}
/* Now read the segment */
segbuf=(unsigned char *)malloc(seglen);
if(segbuf==0) return AF_ERROR_SIG_MALLOC;
if(af_get_seg(af,segname,&arg,segbuf,&seglen)){
free(segbuf);
return AF_ERROR_SIG_DATAREAD_ERROR; // can't read the segment length
}
}
/* Verify the signature*/
uint8_t sigbuf[1024];
uint32_t sigbuf_len = sizeof(sigbuf);
uint32_t arg_net = htonl(arg);
EVP_MD_CTX md; /* EVP message digest */
EVP_DigestInit(&md,sha256);
EVP_DigestUpdate(&md,(const unsigned char *)segname,strlen(segname)+1);
EVP_DigestUpdate(&md,(const unsigned char *)&arg_net,sizeof(arg_net));
EVP_DigestUpdate(&md,segbuf,seglen);
EVP_DigestFinal(&md,sigbuf,&sigbuf_len);
int r = memcmp(sigbuf,sigbuf_,sigbuf_len);
if(sigbuf_len != sigbuf_len_) r = -1; // doesn't match
free(segbuf);
if(r==0) return 0; // verifies
return AF_ERROR_SIG_BAD; // doesn't verify
}
/* Verify a segment against a particular signature and public key */
int af_sig_verify_seg2(AFFILE *af,const char *segname,EVP_PKEY *pubkey,u_char *sigbuf,size_t sigbuf_len,int sigmode)
{
const EVP_MD *sha256 = EVP_get_digestbyname("SHA256");
if(!sha256){
(*af->error_reporter)(aff_cannot_sign);
return AF_ERROR_NO_SHA256; //
}
/* Now get the data to verify */
size_t seglen = 0;
unsigned char *segbuf = 0;
uint32_t arg=0;
/* Do we need to get the page */
if(sigmode==AF_SIGNATURE_MODE1){
int64_t pagenumber = af_segname_page_number(segname);
if(pagenumber>=0){
seglen = af_page_size(af);
segbuf = (unsigned char *)malloc(seglen);
if(segbuf==0) return AF_ERROR_SIG_MALLOC;
if(af_get_page(af,pagenumber,segbuf,&seglen)){
free(segbuf);
return -1;
}
}
}
if(segbuf==0){ // get the raw segment
if(af_get_seg(af,segname,0,0,&seglen)){
return AF_ERROR_SIG_DATAREAD_ERROR; // can't read the segment length
}
/* Now read the segment */
segbuf=(unsigned char *)malloc(seglen);
if(segbuf==0) return AF_ERROR_SIG_MALLOC;
if(af_get_seg(af,segname,&arg,segbuf,&seglen)){
free(segbuf);
return AF_ERROR_SIG_DATAREAD_ERROR; // can't read the segment length
}
}
/* Verify the signature*/
uint32_t arg_net = htonl(arg);
EVP_MD_CTX md; /* EVP message digest */
EVP_VerifyInit(&md,sha256);
EVP_VerifyUpdate(&md,(const unsigned char *)segname,strlen(segname)+1);
EVP_VerifyUpdate(&md,(const unsigned char *)&arg_net,sizeof(arg_net));
EVP_VerifyUpdate(&md,segbuf,seglen);
int r = EVP_VerifyFinal(&md,sigbuf,sigbuf_len,af->crypto->sign_pubkey);
free(segbuf);
if(r==1) return 0; // verifies
return AF_ERROR_SIG_BAD; // doesn't verify
}
int af_sig_verify_seg(AFFILE *af,const char *segname)
{
#ifdef USE_AFFSIGS
if(aff::ends_with(segname,AF_SIG256_SUFFIX)){
return AF_ERROR_SIG_SIG_SEG; // don't verify the signature segments
}
/* Need the public key if I don't have it */
if(af->crypto->sign_pubkey==0){
unsigned char certbuf[65536];
size_t certbuf_len = sizeof(certbuf);
if(af_get_seg(af,AF_SIGN256_CERT,0,certbuf,&certbuf_len)!=0){
return AF_ERROR_SIG_NO_CERT;
}
af->crypto->sign_cert = 0;
BIO *cert_bio = BIO_new_mem_buf(certbuf,certbuf_len);
PEM_read_bio_X509(cert_bio,&af->crypto->sign_cert,0,0);
BIO_free(cert_bio);
af->crypto->sign_pubkey = X509_get_pubkey(af->crypto->sign_cert);
}
/* Figure out the signature segment name */
char sigseg[AF_MAX_NAME_LEN + 1 + sizeof(AF_SIG256_SUFFIX)];
strlcpy(sigseg,segname,sizeof(sigseg));
strlcat(sigseg,AF_SIG256_SUFFIX,sizeof(sigseg));
/* Get the signature (it says how we need to handle the data) */
unsigned char sigbuf[2048]; // big enough to hold any conceivable signature
size_t sigbuf_len=sizeof(sigbuf);
uint32_t sigmode=0;
if(af_get_seg(af,sigseg,&sigmode,sigbuf,&sigbuf_len)){
return AF_ERROR_SIG_READ_ERROR;
}
return af_sig_verify_seg2(af,segname,af->crypto->sign_pubkey,sigbuf,sigbuf_len,sigmode);
#else
return AF_ERROR_SIG_NOT_COMPILED; // sig support not compiled in
#endif
}
/****************************************************************
*** PUBLIC KEY ENCRYPION ROUTINES
****************************************************************/
/**
* af_set_seal_certfiles
*
* Specifies the certific file(s) to use for creating a new affkey.
* If an affkey is already on the disk, this returns with an error.
*
* @param af - The open AFFILE
* @param certfile - The filename of the certificate file to read
*/
int af_set_seal_certificates(AFFILE *af,const char *certfiles[],int numcertfiles)
{
const EVP_MD *sha256 = EVP_get_digestbyname("SHA256");
if(!sha256){
(*af->error_reporter)(aff_cannot_sign);
return AF_ERROR_NO_SHA256; //
}
char evp0[AF_MAX_NAME_LEN]; // segment where we will store the encrypted session key
snprintf(evp0,sizeof(evp0),AF_AFFKEY_EVP,0);
/* If an affkey has not been created, create one if there is a public key(s)...
* todo: this should probably see if there is ANY evp segment.
*/
if(af_get_seg(af,evp0,0,0,0)==0) return -1; // make sure no encrypted EVP exists
if(af_get_seg(af,AF_AFFKEY,0,0,0)==0) return -1; // make sure no passphrase exists
if(certfiles==0 || numcertfiles==0) return -1; // make sure the user supplied a certificate
/* First make the affkey */
unsigned char affkey[32];
int r = RAND_bytes(affkey,sizeof(affkey));
if(r!=1) r = RAND_pseudo_bytes(affkey,sizeof(affkey)); // true random not supported
if(r!=1) return AF_ERROR_RNG_FAIL; // pretty bad...
af_seal_affkey_using_certificates(af, certfiles, numcertfiles, affkey);
return 0;
}
/**
* af_seal_affkey_using_certificates
*
* Encrypt the provided affkey.
*
*
*/
int af_seal_affkey_using_certificates(AFFILE *af,const char *certfiles[],int numcertfiles, unsigned char affkey[32])
{
/* Repeat for each public key.. */
int r;
for(int i=0;i<numcertfiles;i++){
EVP_PKEY *seal_pubkey=0; // encrypting public key (for encrypting the affkey)
X509 *seal_cert=0; // encrypting certificate that was used...
BIO *bp = BIO_new_file(certfiles[i],"r");
if(!bp) return -1;
PEM_read_bio_X509(bp,&seal_cert,0,0);
BIO_free(bp);
if(seal_cert==0){
return -2;
}
seal_pubkey = X509_get_pubkey(seal_cert);
/* Create the next encrypted key. First make a copy of it... */
unsigned char affkey_copy[32];
memcpy(affkey_copy,affkey,32);
EVP_CIPHER_CTX cipher_ctx;
/* IV */
unsigned char iv[EVP_MAX_IV_LENGTH];
RAND_pseudo_bytes(iv, EVP_MAX_IV_LENGTH); /* make a random iv */
/* EK */
unsigned char *ek=0;
unsigned char *ek_array[1];
int ek_size = EVP_PKEY_size(seal_pubkey);
ek = (unsigned char *)malloc(ek_size);
ek_array[0] = ek;
/* Destination for encrypted AFF key */
unsigned char encrypted_affkey[1024];
int encrypted_bytes = 0;
memset(encrypted_affkey,0,sizeof(encrypted_affkey));
r = EVP_SealInit(&cipher_ctx,EVP_aes_256_cbc(),ek_array,&ek_size,&iv[0],&seal_pubkey,1);
if(r!=1) return -10; // bad
r = EVP_SealUpdate(&cipher_ctx,encrypted_affkey,&encrypted_bytes,affkey_copy,sizeof(affkey_copy));
if(r!=1) return -11; // bad
int total_encrypted_bytes = encrypted_bytes;
r = EVP_SealFinal(&cipher_ctx,encrypted_affkey+total_encrypted_bytes,&encrypted_bytes);
if(r!=1) return -12;
total_encrypted_bytes += encrypted_bytes;
/* Now we need to combine the IV, encrypted key, and the encrypted aff key onto a single structure
* and write it out
*/
const int int1 = sizeof(int)*1;
const int int2 = sizeof(int)*2;
const int int3 = sizeof(int)*3;
const int buflen = int3+EVP_MAX_IV_LENGTH+ek_size+total_encrypted_bytes;
unsigned char *buf = (unsigned char *)malloc(buflen);
*(u_int *)(buf) = htonl(1); // version 1.0
*(u_int *)(buf+int1) = htonl(ek_size);
*(u_int *)(buf+int2) = htonl(total_encrypted_bytes);
memcpy(buf+int3,iv,EVP_MAX_IV_LENGTH);
memcpy(buf+int3+EVP_MAX_IV_LENGTH,ek,ek_size);
memcpy(buf+int3+EVP_MAX_IV_LENGTH+ek_size,encrypted_affkey,total_encrypted_bytes);
/* Write this into the seg */
char segname[AF_MAX_NAME_LEN];
snprintf(segname,sizeof(segname),AF_AFFKEY_EVP,i);
if(af_update_segf(af,segname,0,buf,buflen,AF_SIGFLAG_NOSEAL)){
return -1; // update seg failed?
}
EVP_PKEY_free(seal_pubkey);
seal_pubkey = 0;
memset(affkey_copy,0,sizeof(affkey_copy)); // overwrite
memset(buf,0,buflen); // overwrite
free(buf);
}
/* Start using this key */
if(af_set_aes_key(af,affkey,256)) return -100; // hm. That's weird.
return 0; // good to go
}
/**
* Given a private key in a file:
* 1 - Scan all of the encrypted AFFKEYs to see if any can be decrypted.
* 2 - When the one is found that can be decrypted, put the AFFKEY in a buffer
* 3 - Return that buffer.
*
* @param af The open AFFILE
* @param private_keyfile - The filename of the key file to read
* @param affkey - The decrypted AFFkey (output)
*
* Load the private and/or public key files.
* Try to decrypt the affkey with the private key.p
*
*/
int af_get_affkey_using_keyfile(AFFILE *af, const char *private_keyfile,u_char affkey[32])
{
if(!private_keyfile) return -1;
BIO *bp = BIO_new_file(private_keyfile,"r");
if(!bp) return -2;
EVP_PKEY *seal_privkey = PEM_read_bio_PrivateKey(bp,0,0,0);
BIO_free(bp);
if(!seal_privkey) return -3;
int i = 0;
int ret = -1; // return code; set to 0 when successful
while(i<1000 && ret!=0){ // hopefully there aren't more than 1000 keys...
char segname[AF_MAX_NAME_LEN];
sprintf(segname,AF_AFFKEY_EVP,i++);
size_t buflen=0;
if(af_get_seg(af,segname,0,0,&buflen)){
return -1; // guess none of the keys work
}
unsigned char *buf = (unsigned char *)malloc(buflen);
if(buf==0) return -1; // malloc failed
if(af_get_seg(af,segname,0,buf,&buflen)){
free(buf);
return -1; // could not get the segment
}
/* Try to get and decrypt the segment */
unsigned char *decrypted = 0; //
if (*(u_int *)buf == htonl(1)){ // check to see if the encrypted EVP is rev 1
/* Handle rev 1 */
const u_int int1 = sizeof(int)*1; // offset #1
const u_int int2 = sizeof(int)*2; // offset #2
const u_int int3 = sizeof(int)*3; // offset #3
int ek_size = ntohl(*(u_int *)(buf+int1));
int total_encrypted_bytes = ntohl(*(u_int *)(buf+int2));
if(int3+EVP_MAX_IV_LENGTH+ek_size+total_encrypted_bytes != buflen){
goto next;
}
unsigned char *iv = buf+int3;
unsigned char *ek = buf+int3+EVP_MAX_IV_LENGTH;
unsigned char *encrypted_affkey = buf+int3+EVP_MAX_IV_LENGTH+ek_size;
/* Now let's see if we can decode it*/
EVP_CIPHER_CTX cipher_ctx;
int r = EVP_OpenInit(&cipher_ctx,EVP_aes_256_cbc(),ek,ek_size,iv,seal_privkey);
if(r==1){
/* allocate a buffer for the decrypted data */
decrypted = (unsigned char *)malloc(total_encrypted_bytes);
if(!decrypted) return -1; // shouldn't fail
int decrypted_len;
r = EVP_OpenUpdate(&cipher_ctx,decrypted,&decrypted_len,encrypted_affkey,total_encrypted_bytes);
if(r==1){
/* OpenSSL requires that we call EVP_OpenFinal to finish the decryption */
unsigned char *decrypted2 = decrypted+decrypted_len; // where the decryption continues
int decrypted2_len = 0;
r = EVP_OpenFinal(&cipher_ctx,decrypted2,&decrypted2_len);
if(r==1){
memcpy(affkey,decrypted,32);
ret = 0; // successful return
}
}
memset(decrypted,0,total_encrypted_bytes); // overwrite our temp buffer
free(decrypted);
}
}
next:;
free(buf);
}
return ret; // return the code
}
/**
*
* Given a private key in a file:
* 1 - Scan all of the encrypted AFFKEYs to see if any can be decrypted.
* 2 - When the one is found that can be decrypted, put the AFFKEY in a buffer
* 3 - Set that buffer to be the active AFFKEY so that the AFF file can be read and written.
*
* @param af - The open AFFILE
* @param private_keyfile - The filename of the key file to read
* @param certfile - The filename of the certificate file to read
*/
int af_set_unseal_keyfile(AFFILE *af,const char *private_keyfile)
{
u_char affkey[32]; // place to put the decrypted affkey
if(af_get_affkey_using_keyfile(af,private_keyfile,affkey)){
return -1; // couldn't get the affkey
}
/* It decrypted. Looks like we got an AFF key */
return af_set_aes_key(af,affkey,256);
}
File Metadata
Details
Attached
Mime Type
text/x-c++
Expires
Tue, Jun 3, 9:01 AM (12 h, 4 m)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
1261763
Default Alt Text
crypto.cpp (30 KB)
Attached To
Mode
rXMOUNT xmount
Attached
Detach File
Event Timeline
Log In to Comment